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The problem Constrained Longest Common Subsequence is a natural extension to the
classical problem Longest Common Subsequence, and has important applications to
bioinformatics. Given k input sequences A1, . . . , Ak and l constraint sequences B1, . . . , Bl ,
C-LCS(k, l) is the problem of finding a longest common subsequence of A1, . . . , Ak that
is also a common supersequence of B1, . . . , Bl . Gotthilf et al. gave a polynomial-time
algorithm that approximates C-LCS(k,1) within a factor

√
m̂|Σ |, where m̂ is the length

of the shortest input sequence and |Σ | is the alphabet size. They asked whether there are
better approximation algorithms and whether there exists a lower bound. In this paper,
we answer their questions by showing that their approximation factor

√
m̂|Σ | is in fact

already very close to optimal although a small improvement is still possible:

1. For any computable function f and any ε > 0, there is no polynomial-time algorithm
that approximates C-LCS(k,1) within a factor f (|Σ |) · m̂1/2−ε unless NP = P. Moreover,
this holds even if the constraint sequence is unary.

2. There is a polynomial-time randomized algorithm that approximates C-LCS(k,1)

within a factor |Σ | · O (
√

OPT · log log OPT/ log OPT) with high probability, where OPT
is the length of the optimal solution, OPT � m̂.

For the problem over an alphabet of arbitrary size, we show that

3. For any ε > 0, there is no polynomial-time algorithm that approximates C-LCS(k,1)

within a factor m̂1−ε unless NP = P.
4. There is a polynomial-time algorithm that approximates C-LCS(k,1) within a factor

O (m̂/ log m̂).

We also present some complementary results on exact and parameterized algorithms for
C-LCS(k,1).

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Longest Common Subsequence (LCS) is a fundamental problem in computer science. Given two input sequences A1 and
A2 and one constraint sequence B , Constrained Longest Common Subsequence (C-LCS) is the problem of finding a longest
common subsequence of A1 and A2 that is also a supersequence of B . The problem C-LCS is a natural extension to the clas-
sical problem LCS, and has application to computing the homology of two biological sequences with a specific or putative
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structure in common [14]. The two biological sequences under examination could be two DNA sequences sharing common
sequence motifs with variable gaps, two protein sequences sharing common structural motifs, two RNA sequences sharing
common secondary structures, or two genomes sharing common synteny blocks. For example, given two input sequences
A1 = cgattggcgcactgccaacata and A2 = gtattggccgcatgccaaatta and a constraint sequence B = ttggcgccaa (derived from the
NF-I transcription factor 5’-TTGGCXXXXXGCCAA-3’), the sequence C = gattggcgcatgccaaata is a longest common subse-
quence of A1 and A2 that is also a supersequence of B .

We review some standard definitions and notations. Given two sequences S and T , we say that S is a subsequence of T if
S can be obtained from T by deleting zero or more letters without changing the order of the remaining letters, and we say
that T is a supersequence of S if S is a subsequence of T . For a sequence S , let S[i] denote the letter of S at position i, let
S[i, j] denote the subsequence of S starting at position i and ending at position j (the subsequence is empty when i > j),
and let |S| denote the length of S . For two sequences S and T , let ST denote the concatenation of S and T , and write
S � T if S is a subsequence of T . For a sequence R and a non-negative integer r, let Rr denote a sequence consisting of r
repetitions of R concatenated together.

The problem C-LCS can be easily generalized to a problem C-LCS(k, l) for an arbitrary number k of input sequences and
an arbitrary number l of constraint sequences [6]:

Problem C-LCS(k, l)

Instance: k input sequences A1, . . . , Ak and l constraint sequences B1, . . . , Bl over an alphabet Σ , where k � 2, l � 1, and
|Σ | � 2.

Problem: Find a longest sequence C such that C � Ai for each i, 1 � i � k, and B j � C for each j, 1 � j � l.

Here the input size n is the total length of the k input sequences and the l constraint sequences.
For C-LCS(2,1), the most basic version of the problem C-LCS on two input sequences A1 and A2 and one constraint

sequence B , there are dynamic programming algorithms running in O (|A1| · |A2| · |B|) time [2,5]; see also [9,1,4,3] for some
related results. The problem C-LCS(k, l) becomes intractable, however, when either the number k of input sequences or the
number l of constraint sequences is unbounded.

An early result of Middendorf [12] on consistent sequences of type (Super, Sub) implies that even if the input and
constraint sequences are over a binary alphabet, it is already NP-hard to decide whether a given instance of C-LCS(2, l) has
a valid solution; see also [13]. Recently, Gotthilf et al. [6] showed that if the sequences are over an arbitrary alphabet, then
even if all constraint sequences have length 1, it is again NP-hard to decide whether a given instance of C-LCS(2, l) has a
valid solution. On the other hand, Gotthilf et al. [6] observed that C-LCS(k,1) is NP-hard because it generalizes the classical
problem LCS on an arbitrary number k of input sequences, which is known to be NP-hard even if the input sequences are
over a binary alphabet [11].

C-LCS(k,1) is perhaps the most interesting variant of C-LCS because of its biological applications, hence it will be the
focus of this paper. Let A1, . . . , Ak be the k input sequences, and B be the single constraint sequence. Without loss of
generality, we assume that the constraint sequence B has length at least one and is a common subsequence of the k input
sequences A1, . . . , Ak . Put m̂ = min1�i�k |Ai| and b = |B|. Then m̂ � b � 1.

Gotthilf et al. [6] gave a polynomial-time algorithm that approximates C-LCS(k,1) within a factor
√

m̂|Σ |, and asked
whether there are better approximation algorithms and whether there exists a lower bound. In the following two theo-
rems, we show that their approximation factor

√
m̂|Σ | is in fact already very close to optimal but nevertheless a small

improvement is still possible:

Theorem 1. For any computable function f and any ε > 0, there is no polynomial-time algorithm that approximates C-LCS(k,1)

within a factor f (|Σ |) · m̂1/2−ε unless NP = P. Moreover, this holds even if the constraint sequence is unary.

Theorem 2. There is a polynomial-time randomized algorithm that approximates C-LCS(k,1) within a factor |Σ | ·
O (

√
OPT · log log OPT/ log OPT) with high probability, where OPT is the length of the optimal solution, OPT � m̂.

For an alphabet of arbitrary size, we can have |Σ | = Θ(m̂). Then the approximation factor of Gotthilf et al.’s algorithm [6]
becomes

√
m̂|Σ | = Θ(m̂). In the following two theorems, we show that again this approximation factor Θ(m̂) is very close

to optimal but nevertheless a small improvement is possible:

Theorem 3. For any ε > 0, there is no polynomial-time algorithm that approximates C-LCS(k,1) within a factor m̂1−ε unless NP = P.

Theorem 4. There is a polynomial-time algorithm that approximates C-LCS(k,1) within a factor O (m̂/ logm̂).

Although the focus of this paper is on approximability, we also obtain some complementary results on exact and param-
eterized algorithms. The following theorem shows that C-LCS(k, l) is fixed-parameter tractable with both the alphabet size
|Σ | and the optimal solution length OPT as parameters, and is polynomially solvable if both k and l are constants:



M. Jiang / Journal of Computer and System Sciences 78 (2012) 689–697 691
Theorem 5. C-LCS(k, l) admits an exact algorithm running in time O (|Σ |OPT+1 · n), where OPT is the length of the optimal solution,
and admits an exact algorithm running in time O (

∏k
i=1(|Ai | + 1) · ∏l

j=1(|B j | + 1) · (k + l)).

2. Approximation lower bounds for C-LCS(k,1)

In this section we prove Theorems 1 and 3.

2.1. Proof of Theorem 1

We prove the inapproximability of C-LCS(k,1) by a reduction from Max-Clique. Our construction is inspired by Midden-
dorf [12, Theorem 2(b)].

Let G be a graph with n vertices and m edges. We construct a C-LCS(k,1) instance consisting of

k =
(

n

2

)
− m + 1

input sequences A1, . . . , Ak over a binary alphabet and a single constraint sequence B .
The constraint sequence B is a unary sequence of n − 1 zeros:

B = 0n−1.

The last input sequence Ak consists of n2 ones and n − 1 zeros:

Ak = 1n(01n)n−1
.

Let V = {1, . . . ,n} be the set of vertices of the graph G . Let Ē be the
(n

2

) − m pairs of vertices of the graph G that are
not edges. For each pair of vertices ē j = {u, v} ∈ Ē , 1 � j �

(n
2

) − m and 1 � u < v � n, we construct a corresponding input
sequence A j of n2 − n ones and n zeros:

A j = (
1n0

)u−1
0
(
1n0

)v−u (
01n)n−v

.

For comparison, observe that

Ak = (
1n0

)u−1
1n(01n)v−u (

01n)n−v
.

We use the term one-block to refer to a substring of n consecutive ones in the input sequences. Note that each input
sequence A j for 1 � j �

(n
2

) − m consists of n − 1 one-blocks and n zeros, while the last input sequence Ak consists of n
one-blocks and n − 1 zeros. Thus m̂ = (n − 1)n + n = n2. This completes the construction. We refer to Fig. 1 for an example.

Fig. 1. A graph G with n = 5 vertices and m = 6 edges. The C-LCS(k,1) instance of k = (5
2

) − 6 + 1 = 5 input sequences A1, . . . , A5 and a single constraint
sequence B . The four input sequences A1, A2, A3, A4 correspond to the 4 non-edges {1,4}, {1,5}, {2,5}, {3,4}. The sequence C corresponds to the clique
{1,2,3}.

Lemma 1. There is a clique K of q vertices in the graph G if and only if there is a sequence C of length � = (q + 1)n − 1 that is a
subsequence of each input sequence Ai and is a supersequence of the constraint sequence B.
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Proof. We first prove the direct implication. Suppose there is a clique K of q vertices in the graph G . Let i1, . . . , iq be the q
vertices in K , where 1 � i1 < · · · < iq � n. We construct a sequence C of qn ones and n − 1 zeros as follows:

C = 0i1−11n0i2−i1 1n . . . 0iq−iq−1 1n0n−iq .

Clearly, C is a supersequence of B . Note that C can be obtained from Ak by deleting all one-blocks except those with
indices i1, . . . , iq . So C is a subsequence of Ak . For each input sequence A j , 1 � j �

(n
2

) − m, the two vertices u and v of the
corresponding non-edge ē j cannot be both in the clique K . Consider two cases:

1. If u /∈ K , then C is a subsequence of the following common subsequence of A j and Ak

(
1n0

)u−1 (
01n)v−u (

01n)n−v
,

which can be obtained either from A j by deleting the zero with index v , or from Ak by deleting the one-block with
index u.

2. If v /∈ K , then C is a subsequence of the following common subsequence of A j and Ak

(
1n0

)u−1 (
1n0

)v−u (
01n)n−v

,

which can be obtained either from A j by deleting the zero with index u, or from Ak by deleting the one-block with
index v .

In either case, C is a subsequence of A j .
We next prove the reverse implication. Suppose there is sequence C of length � = (q + 1)n − 1 that is a subsequence

of each input sequence Ai and is a supersequence of the constraint sequence B . Then C must contain exactly qn ones and
exactly n − 1 zeros, because Ak and B have the same number n − 1 of zeros. Note that the ones in each input sequence
are grouped into one-blocks. When selecting the common subsequence C from each input sequence, we can select the ones
from left to right in each one-block and add the remaining ones of a one-block if it is only partially selected. In this way, we
obtain a sequence C ′ that is a supersequence of C and is still a subsequence of each input sequence. Moreover, C ′ consists
of at least q one-blocks and exactly n −1 zeros. Let K be the set of vertices corresponding to the indices of these one-blocks
in Ak . We claim that K is a clique in the graph G , that is, for each non-edge ē j = {u, v}, either u or v is not in K .

We prove this claim by contradiction. Suppose that both vertices u and v of some non-edge ē j are in K . Then the
corresponding one-blocks with indices u and v in Ak are selected in C ′ . Since all n − 1 zeros in Ak are selected in C ′ , C ′
contains exactly u − 1 zeros before the one-block u, exactly n − v zeros after the one-block v , and exactly v − u zeros
between them. Observe that for any two one-blocks in A j , if there are at least u − 1 zeros before the left one-block and
there are at least n − v zeros after the right one-block, then these two one-blocks must both come from the middle part
0(1n0)v−u of A j , and hence have at most v − u − 1 zeros between them. Thus C ′ cannot be a subsequence of A j . This is a
contradiction. �

We now prove the approximation lower bounds for C-LCS(k,1). Suppose there is a polynomial-time algorithm that
approximates C-LCS(k,1) within a factor f (|Σ |) · m̂1/2−ε for some computable function f and some ε > 0. Then we can
obtain a polynomial-time algorithm that approximates Max-Clique (on a graph G of n vertices) within a factor n1−ε as
follows:

1. If n < (2 f (2))1/ε , use a brute-force algorithm to find a maximum clique in G , then return the clique.
2. Construct a C-LCS(k,1) instance as in our reduction, use the f (|Σ |) · m̂1/2−ε -approximation algorithm to find a subse-

quence of length �, then obtain a clique of size q in G following the reverse implication of Lemma 1. If q � 1, return
the clique of size q. Otherwise, return any single vertex in G as a clique of size 1.

The algorithm clearly finds an optimal solution in constant time if it returns in step 1. Now assume that n � (2 f (2))1/ε ,
and proceed to step 2. Let q∗ be the maximum size of a clique in G . Let �∗ be the maximum length of a constrained
common subsequence for the reduced C-LCS(k,1) instance. By Lemma 1, we have �∗ = (q∗ + 1)n − 1. The algorithm finds a
subsequence of length

� � �∗

f (2) · m̂1/2−ε
= (q∗ + 1)n − 1

f (2) · m̂1/2−ε
� q∗ + 1

f (2) · m̂1/2−ε
n − 1,

then obtains a clique of size

q � q∗ + 1
ˆ 1/2−ε

− 1.

f (2) · m
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Recall that m̂ = n2 and n � (2 f (2))1/ε . It follows that

max{q,1} � q + 1

2
� q∗ + 1

2 f (2) · m̂1/2−ε
>

q∗

2 f (2) · n1−2ε
= nε

2 f (2)
· q∗

n1−ε
� q∗

n1−ε
.

Let us recall the following result of Zuckerman which improves an earlier result of Håstad [8]:

Theorem 6. (See Zuckerman (2007) [15].) For any ε > 0, there is no polynomial-time algorithm that approximates Max-Clique within
a factor n1−ε unless NP = P.

By our reduction, it follows that for any computable function f and any ε > 0, there is no polynomial-time algorithm
that approximates C-LCS(k,1) within a factor f (|Σ |) · m̂1/2−ε unless NP = P. The proof of Theorem 1 is now complete.

2.2. Proof of Theorem 3

It is easy to check that the reduction that Jiang and Li [10] used to prove the inapproximability of LCS over an arbitrary
alphabet is an L-reduction from Max-Clique. Thus, in conjunction with the result of Zuckerman [15], this L-reduction
actually implies the following theorem although it is not explicitly stated in their paper:

Theorem 7. (See Jiang and Li (1995) [10].) For any ε > 0, there is no polynomial-time algorithm that approximates LCS over an
arbitrary alphabet within a factor m̂1−ε unless NP = P, where m̂ is the length of the shortest input sequence.

Since C-LCS(k,1) over an arbitrary alphabet includes LCS over an arbitrary alphabet as a special case, Theorem 3 imme-
diately follows.

3. Improved approximation algorithms for C-LCS(k,1)

In this section we prove Theorems 2 and 4.

3.1. Proof of Theorem 2

Let C∗ be a constrained longest common subsequence. Since B � C∗ , we can embed B inside C∗ in some fixed way such
that C∗ = C0 B[1]C1 . . . B[b]Cb , then assign each index a between 0 and b (which we call a slot) a value that is the length of
the subsequence Ca .

The previous approximation algorithm of Gotthilf et al. [6] is essentially a greedy algorithm that composes a constrained
common subsequence from two parts: the constraint sequence B itself and a |Σ |-approximation of the subsequence Ca for
a slot a of the highest value. Our improved algorithm for C-LCS(k,1) uses Gotthilf et al.’s greedy algorithm [6] as the first
step, then supplements it with a brute-force algorithm and a random procedure. Instead of betting on a single large slot,
the random procedure guesses a large number s of slots of high value. Intuitively, the random procedure and the greedy
algorithm complement each other in their respective worst cases. Then an improved approximation ratio can be obtained
by balancing them with suitably chosen parameters.

Algorithm A1.

1. Run Gotthilf et al.’s algorithm [6] to find a constrained common subsequence:
(a) For each slot a, 0 � a � b, do the following:

(i) Partition the constraint sequence B → B[1,a]B[a + 1,b].
(ii) Partition each input sequence Ai → Li,a Mi,a Ri,a such that B[1,a] � Li,a , B[a + 1,b] � Ri,a , and Mi,a is maximal.

(iii) Find a longest unary sequence Ma that is a common subsequence of Mi,a , 1 � i � k.
(b) Compose a sequence B[1,a]Ma B[a + 1,b] for a slot a such that |Ma| is maximum.

2. Let z be the smallest positive integer1 such that for all integers � � z,

� � 16�log�/ log log��3. (1)

For each integer �, b +1 � � < z, use brute force to find a constrained common subsequence of length � if it exists: enu-
merate all |Σ |� candidate sequences of length �, and for each candidate sequence check whether it is a supersequence
of the constraint sequence B and is a common subsequence of the input sequences Ai , 1 � i � k.

1 A calculation shows that z = 324. Our choice of this value is somewhat arbitrary. We set the parameter z to a concrete value here mostly for conve-
nience, so that later in the analysis we can prove a concrete approximation ratio λ � |Σ |√OPT · log log OPT/ log OPT without using the big-O notation. In
actual implementation, we can set z to a smaller value, which results in a reduced running time of step 2 at the cost of an increased approximation ratio
λ that is still O (|Σ |√OPT · log log OPT/ log OPT).
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3. For each integer �, max{b + 1, z} � � � m̂, set the parameters

s = �log �/ log log��, l = ⌊
(� · log log�/ log�)1/2⌋ − 1, and w =

⌈
l

|Σ |
⌉
,

then for some tunable constant r (which controls the probability), repeat the following random procedure for r(4s)s

rounds to find a constrained common subsequence of length b + sw:
(a) Randomly select (sample with replacement) s slots between 0 and b. Sort the s slots in ascending order: 0 � b1 �

· · · � bs � b. Randomly select a letter σi ∈ Σ for each slot bi , 1 � i � s.
(b) If the s slots are all distinct, that is, 0 � b1 < · · · < bs � b, compose a candidate constrained sequence

B[1,b1]σ w
1 . . . B[bs−1 + 1,bs]σ w

s B[bs + 1,b],
and check whether it is a common subsequence of the input sequences Ai , 1 � i � k.

4. Return the longest constrained sequence found.

Approximation ratio. Let OPT be the length of the constrained longest common subsequence C∗ . Let APX1, APX2, and
APX3, respectively, be the maximum length of a constrained common subsequence found in step 1, step 2, and step 3 of the
algorithm. Put λ1 = OPT/APX1, λ2 = OPT/APX2, λ3 = OPT/APX3, and λ = min{λ1, λ2, λ3}.

We clearly have b � OPT � m̂. If OPT = b, then APX1 = OPT and λ1 = 1. Also, if b + 1 � OPT < z, then APX2 = OPT and
λ2 = 1. So suppose that

max{b + 1, z} � OPT � m̂.

Then OPT is equal to � for some iteration in step 3.
Put

f = √
(log OPT/ log log OPT)/|Σ |. (2)

We will show that

λ �
√

OPT · |Σ |/ f ,

hence

λ � |Σ |√OPT · log log OPT/ log OPT � |Σ |
√

m̂ · log logm̂/ logm̂.

We first look at step 1. Let h be the highest value of a slot. Clearly,

h �
⌈

OPT − b

b + 1

⌉
� 1.

Gotthilf et al.’s algorithm [6] finds a constrained common subsequence of length

APX1 � b +
⌈

h

|Σ |
⌉

� max

{
b + 1,

OPT

(b + 1)|Σ |
}
,

thus

λ1 � min

{
OPT

b + 1
, (b + 1)|Σ |

}
.

If h �
√

OPT · |Σ | · f , then APX1 �
√

OPT/|Σ | · f and λ1 �
√

OPT · |Σ |/ f . So suppose that

h �
√

OPT · |Σ | · f . (3)

If b + 1 �
√

OPT/|Σ | · f or b + 1 �
√

OPT/|Σ |/ f , then again λ1 �
√

OPT · |Σ |/ f . So suppose that√
OPT/|Σ |/ f � b + 1 �

√
OPT/|Σ | · f . (4)

Now proceed to step 3. Consider the iteration where � = OPT. From (2) we have

s = �log OPT/ log log OPT � = ⌈
f 2|Σ |⌉, (5)

and

l = ⌊
(OPT · log log OPT/ log OPT )1/2⌋ − 1 = ⌊√

OPT/|Σ |/ f
⌋ − 1. (6)
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Also, from (1) we have

OPT � 16s3. (7)

Let t be the number of slots of value at least l. Then the number of slots of value less than l is b + 1 − t . Since

OPT � b + t · h + (b + 1 − t) · l,

we have

t � OPT − b − (b + 1)l

h − l
� OPT − (b + 1)(l + 1)

h
� OPT − √

OPT/|Σ | · f · √OPT/|Σ |/ f√
OPT · |Σ | · f

= (1 − 1/|Σ |)√OPT/|Σ |/ f � 1

2

√
OPT/|Σ |/ f , (8)

where the third inequality follows from (3), (4), and (6). Then, from (8), (7), and (5) we have

t � 1

2

√
OPT

f 2|Σ | � 1

2

√
16s3

s
= 2s, (9)

and from (9) and (5) we have

b � b + 1

2
� t

2
� s � 2 f 2. (10)

If a constrained common subsequence of length b + sw is found in this iteration of step 3, then from (6) and (10) we have

APX3 � b + f 2|Σ | · l

|Σ | � b + √
OPT/|Σ | · f − 2 f 2 �

√
OPT/|Σ | · f ,

thus

λ3 �
√

OPT · |Σ |/ f .

Probability. We now estimate the probability that a constrained common subsequence is found in step 3 in the iteration
where � = OPT. First consider the probability p that a constrained common subsequence is found in one round of the
random procedure. Since the random procedure always finds a constrained common subsequence if it guesses correctly s
distinct slots of value at least l, and guesses correctly the dominating letter for each of the s slots, we have

p � t!/(t − s)!
(b + 1)s

· 1

|Σ |s
. (11)

From (9), we have t!/(t − s)! � (t/2)s . From (8) and (4), we have t/(b + 1) � 1/(2 f 2). Also recall (5) that s = � f 2|Σ |�. Thus

p �
(

t/2

(b + 1)|Σ |
)s

�
(

1

4 f 2|Σ |
)s

�
(

1

4s

)s

.

Put x = (4s)s . Then each round of the random procedure finds a constrained common subsequence with probability at
least 1/x. Since the random procedure is repeated for rx rounds, the probability that a constrained common subsequence is
not found in rx consecutive rounds is at most

(1 − 1/x)rx � 1/er,

which can be made arbitrarily small by choosing the constant r sufficiently large.

Time complexity. Steps 1 and 2 are clearly polynomial. For step 3 to be polynomial, it is sufficient that s = O (log n/ log log n)

so that (4s)s = poly(n), where n is the input size. This is clearly satisfied since s = �log �/ log log�� and � � m̂ � n.

3.2. Proof of Theorem 4

We obtain an O (m̂/ logm̂) approximation for C-LCS(k,1) over an arbitrary alphabet using Halldórsson’s partitioning
technique [7]. Assume without loss of generality that m̂ � 2.
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Algorithm A2.

1. Find a shortest input sequence Â, which has length m̂, and partition it into q � �m̂/ log m̂� substrings Â → S1 . . . Sq such
that each substring S p , 1 � p � q, has length at most �log m̂�.

2. For each pair of indices u and v , 0 � u < v � b + 1, and for each subsequence T of each substring S p , 1 � p � q,
compose a candidate constrained sequence

B[1, u]T B[v,b],
and check whether it is a supersequence of the constraint sequence B and is a common subsequence of the input
sequences Ai , 1 � i � k.

3. Return the longest constrained sequence found.

Approximation ratio. Let C∗ be a constrained longest common subsequence. Since Â = S1 . . . Sq and C∗ � Â, we can parti-
tion C∗ into q substrings C∗ → C1 . . . Cq such that C p � S p for 1 � p � q. Similarly, since C∗ = C1 . . . Cq and B � C∗ , we can
partition B into q substrings B → T1 . . . Tq such that T p � C p for 1 � p � q.

By the Pigeonhole principle, at least one of the q substrings of C∗ , say C p , has length at least 1/q times the length
of C∗ . This substring C p is enumerated by the algorithm as some subsequence T of S p . Write T1 . . . T p−1 = B[1, u] and
T p+1 . . . Tq = B[v,b]. Then

B = T1 . . . T p−1T p T p+1 . . . Tq � T1 . . . T p−1C p T p+1 . . . Tq = B[1, u]T B[v,b]
and

B[1, u]T B[v,b] = T1 . . . T p−1C p T p+1 . . . Tq � C1 . . . C p−1C pC p+1 . . . Cq = C∗.
The length of B[1, u]T B[v,b] is at least the length of T , which is at least 1/q � 1/�m̂/ log m̂� times the length of C∗ .

Time complexity. The dominating step of the algorithm is step 2. There are O (b2) pairs of indices u and v , �m̂/ log m̂�
substrings S p , and at most 2�logm̂� = O (m̂) subsequences T of each substring S p . Thus the total number of candidate
constrained sequences is O (b2m̂2/ log m̂). For each candidate constrained sequence, it takes O (n) time to check whether it
is valid. The overall running time of the algorithm is polynomial.

4. Exact algorithms for C-LCS(k, l)

In this section we prove Theorem 5 by presenting two exact algorithms for C-LCS(k, l).
Our first exact algorithm, which runs in O (|Σ |OPT+1 ·n) time, is a trivial brute-force algorithm: for � = 1, . . . ,m̂, enumer-

ate all |Σ |� sequences of length �, then for each candidate sequence check in O (n) time whether it is a constrained common
subsequence; stop the iteration if for some � no candidate sequence of length � is a constrained common subsequence.

Our second exact algorithm is based on dynamic programming, and achieves a running time of O (
∏k

i=1(|Ai | + 1) ·∏l
j=1(|B j | + 1) · (k + l)). For simplicity, we only compute the maximum length of a constrained common subsequence

(or report that the problem has no solution). By standard techniques, an actual constrained common subsequence of the
maximum length can be found (if it exists) within the same running time.

Denote by L(a1, . . . ,ak;b1, . . . ,bl) the maximum length of a constrained common subsequence for the subproblem with
partial input sequences A1[1,a1], . . . , Ak[1,ak] and partial constraint sequences B1[1,b1], . . . , Bl[1,bl], where 0 � ai � |Ai |
and 0 � b j � |B j | for 1 � i � k and 1 � j � l. We use the value −∞ to indicate that a subproblem has no solution. The
desired entry is L(|A1|, . . . , |Ak|; |B1|, . . . , |Bl|).

The base cases are

L(0, . . . ,0;0, . . . ,0) = 0,

and

L(a1, . . . ,ak;b1, . . . ,bl) = −∞, if min
1�i�k

ai < max
1� j�l

b j.

The recurrence is

L(a1, . . . ,ak;b1, . . . ,bl) = max

{
max1�i�k L(a1, . . . ,ai−1,ai − 1,ai+1, . . . ,ak;b1, . . . ,bl),

L(a1 − 1, . . . ,ak − 1;b′
1, . . . ,b′

l) + 1,

where the second case applies only if A1[a1] = · · · = Ak[ak] = σ for some σ ∈ Σ ; then we let b′
j = b j − 1 if B j[b j] = σ and

let b′
j = b j if B j[b j] 
= σ .

The table L has
∏k

i=1(|Ai | + 1) · ∏l
j=1(|B j | + 1) entries in total; each entry can be computed in O (k + l) time. Hence the

overall running time of the dynamic programming algorithm is O (
∏k

i=1(|Ai | + 1) · ∏l
j=1(|B j | + 1) · (k + l)).
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